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Abstract

A grid-based method for numerical solution of systems of integrodifferential
dynamical equations is introduced that has computational costs which scale
linearly with the grid size. Grid parameters are automatically generated from
a user supplied error tolerance. We illustrate the accuracy of the method by
solving a variety of representative sets of equations. The method is much faster
than comparable quadratically scaling algorithms.

PACS numbers: 02.50.Ey, 02.60.Nm, 02.60.Cb, 03.65.Yz

1. Introduction

Integrodifferential dynamical equations arise in many branches of physics [1-5], engineering
[6], chemistry [7-11] and mathematical finance [12]. The generalized Langevin equation
(GLE) [4] for the rate of change of an observable P(¢), i.e.,

P(t) = —/0 dt'y(t —t")P(t') + f(1), (1)

which is used to model transport properties in many physical systems [1-3], is of this type.
Here P (t) could be the momentum, for example, of a particle in a viscous medium subject to a
random force f(¢). The key feature of the GLE is the memory kernel y (#) which weights the
contributions of previous values of the observable P(¢) to its current rate of change. Unless
y (¢) is of the form ) A e~ Bi’, in which case equation (1) can be reformulated as a larger
set of ordinary differential equations [10], such equations are typically very difficult to solve.
Formally, one may write the solution of (1) as an inverse Laplace transform

1 c+ioo
P(t) = %/ o dz e“[z+ T (@)1 (P(0) + F(2)), 2
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where I'(z), F(z) are the Laplace transforms of y(¢), f(#). Formula (2) is rarely useful in
practice, however, due to the difficulty of choosing c.

Instead, various quadratically scaling grid based methods are employed [1, 5, 6, 13]. For
example, equation (1) can be rewritten in ordinary differential form [13]

P(t) = —1(1,0) + f(1) 3)
At u) = y () P(t) + 0A(t, u)/du (4)

at the expense of introducing a new observable A (¢, u) with an initial condition A(0, u) = 0
and an auxiliary variable u. If u is then discretized on a grid and d/0u represented by a matrix
[13, 14], then equations (3)—(4) reduce to a set of ordinary differential equations. With some
minor modifications [13] this approach becomes a general and fairly useful method. However,
if n is the number of points in the grid then the computational costs will scale as n> which can
be quite expensive for many problems. Also, there are additional parameters associated with
such methods (e.g. / and g in [13]) which can be tricky to estimate.
However, suppose we define instead the Fourier transformed observable

Alt,s) = \/% /_Z du e 8“0 (t, u) (5)
which obeys
At,s) =T(s)P(t) +isA(t, s), (6)

where I'(s) is the Fourier transform of y (u). This equation when placed on a grid in s will
have computational costs which scale linearly with the number of grid points. Moreover,

At,0) = ds A(t, s) (7N

1 oo
V2r —/—oo
can be implemented numerically as a sum over the s grid points, and hence this calculation
will also scale linearly. This observation forms the basis of the numerical method we advocate
here. It avoids all of the auxiliary parameters of [13] and can be implemented so that the grid
size n and extent are chosen based on a user specified tolerance.

We show that generalizations of equations (3), (6) and (7) can be used as the basis of a
fast and accurate numerical method. In section 2, we explain how the method works and how
the parameters of the grids can be automatically chosen. In section 3 we solve a number of
example problems. Section 4 explores the connection between the requested tolerance and the
actual relative accuracy of the solutions.

2. Numerical method

The procedure we will outline should apply to a wide class of equations. Indeed, the examples
are so varied that the method is best illustrated by considering individual cases. However, to
give some concreteness to our initial discussion we can consider equations of GLE type, e.g.,

Xit)=a;X(@),1) — /0 dr"yj(t —t)b;(X (1), ') + £ (1) )

forj=1,..., N where X(¢) = (X (¢), ..., Xy(t)) and f;(¢) are colored noises.
The first step is to transform equations (8) into ordinary differential form by defining

At u) = / dt'yj(t — ' +uw)b;(X(t"), 1) 9)
0
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in which case we may rewrite equations (8) as

Xj(t) =a;(X(1),1) —A;(,0) + f;(1)

. (10)
Aj(t,u) =yj)b;X(), 1) + 94, (1, u)/du
with A (0, ) = 0 by construction. Secondly, we define a Fourier transform
1 * -
Aj(t,s) = —/ due™x;(, u) (11)
! V2 J- !
in terms of which equations (10) become
Xi(t) =a;(X(@),t) — Ar;(t,0) + f;(t) (12)
Aj(t,s) =T;()b;(X(t), 1) +isA;(t,s) (13)

with A ;(0, s) = 0, and I'j (s) is the Fourier transform of y; (u). Equation (13) does not involve
partial derivatives such as those in equations (10). Note also that A;(z, 0) is to be obtained by
the inverse Fourier transform

A (t,0) = ds A;(t, s). (14)

1 [e ]
kY, 2 /700
Implementation of equations (12)—(13) requires discretization of the variable s, and this
discretization should be done for each j independently since I';(s) will be different for each
equation (13). Since y;(—t) = y;(¢) in most cases, I";(s) will generally be symmetric in s.
In addition equation (14) requires a symmetric integration over s. Hence, a symmetric grid of

the form
5 (k) = (=n® 4k — 1) /2 (15)

J J J

fork =1, 21157’.“01 + 1 seems appropriate. The integral in equation (14) then becomes

id
2;15"( +1

As;
LS A s (R, (16)
k=1

V2

where As; = s / nf“d. Here it is worth noting that if y;(¢) is real and symmetric, and
if b;(X(z),1) is real then A;(t, —s) = [A (¢, s)]* and so equations for s < 0 need not be
included.

We now have a set of equations, (12) and (13) for a ﬁnite set of s values, for which
computational costs will scale linearly with the grid sizes nfnd. Finally then, we need some

)\.j(l‘, 0) =

max

systematic way of choosing the s7** and n?rid which would allow the whole procedure to be

automated.

2.1. Finding s}“ax
If A;(t,s) were known for all # and s we could find s}“a" by looking at the decay of A;(t,s)
to zero as s — 00. Since we do not know the A (%, s), solutions of

A[je“(t, 5)=T;(s)+ isAl]?St(t, s), (17)

for which the factors b;(X(#), t) in equation (13) have been dropped, seem the best alternative.
It can be readily shown that

sin st

Re A'(t,5) = Tj(s). (18)

N
3
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Instead of looking at all possible ¢ values we choose instead to take ¢ = f.,g Where feyq is the
longest time of interest in the overall dynamics. Thus, we choose s7** so that the integral of
the test function over this interval will be converged. In what follows we will assume that
['j(s) is symmetric in s and we will thus integrate from zero to s7**. In the event that I'; (s)
is asymmetric, integrations forward and backward from zero would need to be performed, but
otherwise the method is the same.

For each j we pick As; = 27 /tenq as a first estimate. Using a variable step-size Runge—
Kutta code [15] we integrate equation (18) to mAs; and (m + 1)As; form = 1,2, .... Let
Ii(s) = [y ]S“’%Fj(v)] dv. For each m we check whether the relative error is less than a
user defined relative tolerance fol,, i.e., whether

[1;((m+1)As;) — I;(mAs;)|/1;((m + 1)As;) < tol,. 19)

When this has occurred three consecutive steps in a row we define s = (m + 1) As; where

J
m is the final value employed.

2.2. Finding nfrid

d

Having obtained s}“a" we can now use it to find niﬁd. We make an initial guess of say niri = 10.
Using the Euler—Maclaurin summation formula we then compute
Igrid( max) _ Asj (|R Alest(t O)| + |R Atest(t max) |)
i S =7 € A end, € A \lend S
2nind
+As; Y |Re A (tena. 55 (k)] (20)
k=n"+2

where s;(k) are as defined in equation (15) and As; = 7/ n%rid. Next we compare

|1;(sm%) — 187 (sm%) | /|1;(s™)]| to a user defined relative tolerance fol, with an index
iconv which is initially set to zero. Upon failure or success with iconv < 2, n%“d is increased
by one; while on success iconv is increased by one. We terminate the process when the relative
error is less than fol, three steps in a row, i.e. when iconv = 3. If iconv # 0 and a step fails
we set iconv = 0 again.

3. Examples

We now have an automated algorithm for choosing the grids which we can test for a number
of exactly solvable example problems. In all examples we took tol, = 107> and tol, = tol,,.
Numerical solutions of ordinary differential equations were obtained via Runge—Kutta [15]
while stochastic equations were solved with ANISE [16]. The grid parameters computed for
each problem are given in table 1.

3.1. Non-Markovian Brownian motion

We consider a number of examples which obey the one-dimensional Brownian motion
Langevin equation [3]

X(@t)=P@t)/M 21)

P(t) = —dV(X(t))/dX (t) — / dt'yt —tHP(E) + F(1), (22)
0
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Table 1. Automatically generated s™** and n&"d,

Example 3.1.1 3.1.2 3.1.3 3.2 33
s 3384 2963 3184 17916 820
smax 167552 10.1788  27.6460 3.0557  2.0944
g - 2472 3348 13251 440
sy - 59062 402124 22599 23038
g™ - - - 16737 -

sax - - - 28547 -

where E[F(t)F(t')] = kgTy(t —t'), and E[-] denotes an average over different realizations
of the noise F(¢). y(t) is the memory function. We will consider three different models for
the potential:

@ ViX) = M /2)a)§X2 which corresponds to a particle in a Harmonic potential, and
y(1) =¢ge s,

VX)) = -WM /2)a)§X 2 which corresponds to a particle in the vicinity of a parabolic
barrier, and y (t) = ¢& e~¢I"!; and

©) V(X) = (MwjA?/4n?)[1 — cos(2rX/A)] which corresponds to a particle in a
periodic potential of period A, and two different memory functions y (1) = ¢&e¢Il and

y (1) = (2°¢/28) e M[cos(wn) + (§/w)) sin(wi]1])] with @ = /Q2 — &2,

Case (d) described below generalizes the above model to two spatial coordinates. In all of
these models fooo dr y (t) = ¢ which can thus be regarded as the constant of friction. In order
to simplify the forms of the equations we choose to work in scaled variables x = X/A, p =
P/(MAa)o), ; = wopl, E = ;/wo,é = é/a)o, T = ZkBT/(Ma)(Z)AZ), Q = Q/O)Q, 5)1 = a)l/a)o
and f = F/(Mw}A). However, for notational simplicity we will drop the tildes from
everything which follows.

3.1.1. Cases (a) and (b). For simplicity we will first study a few examples without noise.
Later we will couple the two models and add noise, but for now in scaled variables we consider

i=p (23)
p=Fx— f dr' cee =" p(e"), 24)
0

where the minus sign applies to (a) while the plus sign applies to (b). Exact solutions of
equation (24) can be obtained by defining A(¢, 0) = fol dr’ ¢& e~€=" p(1') so that

x=p (25)
p=Fx— 1,0 (26)
At,0) = ¢&p — £A(t, 0) 27)

with A(0, 0) = 0. We also chose x(0) = 0.1, p(0) =0.01,¢, = 1,and & = 1.
Similarly, to employ the grid method we define A(t, u) = fol dr’ ¢& e &=+ p(¢") which
then yields the equation

A _ |2 . 2,2\ L
At s) = n(é p()/E” +57) +isA(t, s), (28)

5
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Figure 1. x and p versus 7 for the harmonic potential.
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Figure 2. x and p versus ¢ for the inverted harmonic potential.

for the Fourier transform which can be solved on a grid obtained as outlined above. We obtain
A(t, 0) from A(z, s) using equation (14). The parameters employed for (a) and (b) are those
listed in table 1 in the column labeled 3.1.1.

In figure 1 we see the position (the exact is the dashed line, the grid method is solid) and
momentum (the exact is the dot-dashed line, the grid method is dotted) of the particle in the
harmonic potential. The particle undergoes four oscillations in the well while continuously
losing amplitude and comes to rest at the bottom. It is impossible to visually distinguish the
exact and grid method results.

Figure 2 shows the exact same quantities and line types for the parabolic barrier. Here
the particle exits the barrier in the positive x direction, reaching great distances and huge

6
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Figure 3. x and p versus ¢ for the periodic potential, first memory function.

momentum in the same time. The figure shows results for the time interval [25, 30] where the
solutions are largest. Again, it is not possible to visually distinguish the exact and grid results.

3.1.2. Case (c). Here we consider the problem of diffusion in a periodic potential [3]. In
scaled variables we have

x=p (29)
p = —(1/2m)sin(27x) —f dt'yt —thp)+ f (30)
0
f=g (31)
where
y(t) = ¢ge sl (32)
g = —Ef +&/CTz(r) (33)
for the first memory function, and
y(t) = (2%¢/28) e [cos(wit) + (& /wi) sin(wi |t])] (34)
g=—Qf —26g+ QA/CTz(t) (35)

for the second. Here E[z(#)z(¢')] = 28(¢ —t’). In the simulations the equations for the noises
f are integrated from —z.,q to zero before actual dynamics of p and x begins. We also chose
x(0)=0,p0) =5, =1,T = 0.5066 and & = 1. While we will show results for only a
single realization of the noise the accuracy achieved is representative of a typical case.

~ Results for the first memory function are shown in figure 3. The grid parameters are
n®" and s™ of column 3.1.2 of table 1. Here again for x the exact result is dashed, and the
grid result is solid. For p the exact is dot dashed and the grid result dotted. Initially, we see

diffusion in the positive x direction with attenuation of momentum. Afterward fluctuations in

7
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Figure 4. x and p versus ¢ for the periodic potential, second memory function.

momentum are smaller, but we again see some diffusions as far as the seventh minimum in
the positive x direction and third minimum in the negative x direction. There are no visible
deviations between the grid method and exact results.

For the second memory function we set Q? = 2.5 and results are shown in figure 4.
The grid parameters are n%nd and 57" of column 3.1.2 of table 1. The same convention is
employed for line types. After a similar initial diffusion in position and decay of momentum,
we see slower diffusion as far as the eleventh minima in the positive x direction, after which
the particle moves all the way to the fifth well in the minus x direction. Again there are no
visible discrepancies between the exact and grid results.

3.1.3. Case (d). Here we consider a set of coupled GLEs which arise in activated rate
theories [11]

& = p, (36)

o ==V (x, y)/0a — 2y(1,0) + fu (37)

fo = —Eafu+Ear/CT 20, (38)
where

ha(t, 1) = /0 A Yt — 14 ) pa) (39)

with E[ fo (1) fa(t)] = Tya(t — 1), Elza ()2 (t")] = 28(t — ') and E[z,()z,(1")] = 0. Here
o€ {x,yh yu(t) = (&g e M and V(x, y) = (1/2)(—x2+w§y2+2,uxy). Wechose =T =
L& =186 =20,=2,u=01x(0) =0, p:(0) = 0.5, y(0) = 0.5, py(0) = 0. Again
the dynamics for the noises is integrated from —z.,q to O before the actual particle dynamics
begins.
Exact solutions can be obtained by using

Ao (t,0) = —Eg)a (1, 0) + &4 pa (40)

and definition (39) in addition to equations (36)—(38).

8
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60 T T T T

Figure 5. x and p, versus ¢ for the rate model.

The grid solutions for the Fourier transforms A, (¢, s) of equation (39), which obey

Agl(t,s) = \/g;éfpam/ (&2 +5%) +isAq(t, 5), (41)

give Ay (t, 0) via equation (14). The grid parameters are given in table 1 under column 3.1.3;
the first set is for y, (¢) and the second for y, ().

Figure 5 shows the unbounded x and p, results for the rate theory model. We again
employ the same line-type assignments. After some initial oscillation in the momentum we
see departure in the positive x direction with the corresponding growth of momentum. The
exact and grid results are not visibly different. In section 4 we will examine the relative errors
for this case in more detail.

In figure 6 the bounded motions of y and p, are shown. Again we employ the same
line types. Here as in case 3.1 (a) we see oscillation about the minimum in both position and
momentum, but without damping. Again, the accuracy is good.

3.2. Non-Markovian spin—spin-bath dynamics

The evolution of a qubit interacting with neighboring idle qubits in a isolated flawed quantum
computer can be modeled as [9]

6, = —Byoy (42)

6y = —2Ba + Byo, — 4Ch,(t,0) (43)

6. = 2By —4Ch.(1,0) (44)
t

Dty 1) = / A’y (t — 1 +w)ou (1), (45)
0

where a € {y, z} and we will consider three different memory functions. Here oy, oy, and
o, denote the expectations of the Pauli matrices for the central qubit. In all cases we chose
0,(0) = 1,0,(0) = 0,(0) = 0, B = 0.06,C = 7.5 x 1074, By = 1. Note also that this

9
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Figure 7. Memory functions versus ¢ for the spin—spin bath.

is not a stochastic set of equations and that relaxation occurs slowly over a very long time
scale.

Here we will examine dynamics for the three different memory functions shown in
figure 7. One is a simple exponential (discussed in section 3.2.1, solid curve), one is a linear
combination of two exponentials (discussed in section 3.2.2, dashed curve), and one is of
Gaussian form (discussed in section 3.2.3, dotted curve). The three memory functions are
quite similar at short time, and differ mainly in the tails, i.e. for + > 2. The grid parameters
are given in column 3.2 of table 1 in the order that they appear below. The large n values
reflect the extremely long duration of the dynamics.

10
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Figure 8. 0., 0y, 0, versus ¢ for the spin—spin-bath, first memory function.

3.2.1. Memory function y(t) = e~5!"l.  We choose £ = 1.25. Exact solutions are obtained
via equations (42)—(44) and

ha(t,0) = 04 — EXg (2, 0). (46)
The Fourier transforms associated with (45) obey
. 2 ¢ .
Ao(t,8) = | ——=——=0,(t) +isAy(t,s) @7
7 E2 + 52

from which we can obtain grid solutions for A, (¢, 0) via equation (14).

The dynamics of all three spin components for the first memory function are shown in
figure 8. Note that only the last 100 time units are shown out of the total 3000. The o, exact
result is plotted with dashed lines, while the grid result is solid. For o, the exact is dot dashed,
the grid result dotted. For o, with the lowest amplitude of the three, the exact is triple dashed
and the grid result double dashed. All three components show persistent oscillation even at
these large times, although the amplitudes of o, and o, are just a tenth of their earlier values.
No significant disagreement is visible even at such long times.

3.2.2. Memory function y (t) = (3/4) 5" + (1/4)e =", Choosing & = 1.25,&, = 0.25
we define

he1(2,0) = (3/4) / e 510-g (') dr (48)
0

ha2(t,0) = (1/4) / e ©0g (1) dr (49)
0

Ao (t,u) = A1 (2, 0) + Ao 2(2, 0), (50)

so that exact solutions can be obtained via the above equations (42)—(44) and

a1 (t,0) = 3/4)0y — E1he,1(2, 0) (G
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Figure 9. 0., 0y, 0, versus ¢ for the spin—spin-bath, second memory function.

Ao (t,0) = (1/4)04 — £k 2(1,0). (52)

To use the grid method note that the Fourier transforms of equation (50) obey

Ayt s) = @( 3/46: ﬂ>%g) +isAy(t. 5) (53)

E2 + 52 " £7 +s2
from solutions of which A, (z, 0) and A, (¢, 0) can be obtained.

The spin components are plotted in figure 9 for the second memory function with the
same line conventions. Here the memory function has a much longer tail, and this leads to
less attenuation of the oscillations in o, and o,. Otherwise the dynamics resembles that of the
first memory function. No disagreement is visible.

3.2.3. Memory function y (1) = A%;gm(l + 222)1 e~ (AW /4P cos(jAwt)). Here the

memory function is a good and analytically solvable approximation to e#” which arises
in the actual physical problem [8, 13]. We define

t
Aao(t, u) = (1/2)v(0) / e S g, (1) dt’ (54)
0
t !
Ao i (t,u) = v(j)/ e S cos[j Aw(t — 1+ u)]og(t)) dr’ (55)
0
t
A2t u) = v(j) / e ST gin[j Aw(r — '+ u))og(¢)) di’ (56)
0
500
Mt 1) = koot u) + D ke j1 (1, 10) (57)
j=1

with v(j) = ij—ﬂ e~ UM /4B Agy = 27/300, B = 1,& = 0.025 so that exact solutions can
be obtained via (42)—(44) and

12
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Figure 10. 0., 0y, 0, versus ¢ for the spin-spin-bath, third memory function.

A 0(t,0) = (1/2)v(0)0, — Ea0(t, 0) (58)
).\'Ol,j,l(ta O) = V(j)O’a — é)\a,j,l(t’ 0) — jAa))\,a’j,z(I, 0) (59)
A j2(t,0) = —Erq,j2(1,0) + jAwhg, j1 (2, 0). (60)

The Fourier transforms of equation (57) obey
500

o . 3 .
Aa(l,s) = Ejgoov(])mﬁa(l)+1SAa(l,S) (61)

and A, (¢, 0) and A, (¢, 0) can be obtained in the usual way via equation (14).
This memory function is the most Markovian of the three, and consequently the attenuation
seen in figure 10 is the largest. Again the accuracy is good.

3.3. Stochastic stock volatility with delay

A model [12] for the stochastic stock variance o->(¢) predicts

do?(t)/dt = €V + (a/T)[ho (t,0) + (u — F)T]* — (o + €)a (1) (62)
Ao (7,0) = / e 50 a (') dw(r)) (63)

with E[dw(#)] = 0, E[dw(¢) dw(t')] = dt 6, , from which it can be shown that the expected
volatility v(t) = E[o%(t)] obeys

(1) =€V +at(n —r)> + (a/T)AE, 0) — (a +€)v(r) (64)

t
A, 0) = f e Xy dr. (65)
-7

Note that equation (62) is nonlinear in the delay term (63). Since both of these equations
are of integrodifferential form we employ a grid method for both and compare the average

13
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Figure 11. Mean volatility v, versus time ¢.

of solutions of equation (62) for o2(t) to the solution of equation (64). We used 1 x 100
trajectories to compute the average.
Grid solutions of (62) and (64) can be obtained by defining

t
Ao (£, 1) = / e 5" 5 (1) dw(t) (66)
t—1+4+u

t
At u) = / e Xy (Y dr (67)
1—T+u

and their associated Fourier transforms which obey

dAs(t,s) = ELU(l‘) dw(t) +isA, (¢, s)dt (68)
T E2+ 52

. 2 2¢ .

A(t,s) = ;mU(t)+lSA(I,S). (69)

The grid parameters are given in column 3.3 of table 1 in the same order.

Following [12] where possible, we set V = 0.00020991,r = 0.02,7 = l,a =
0.060445, ¢ = 0.012391, . = 0.000235, & = 0.005, 0y = 0.01, 0(¢') = 0 and v(t') = 0 for
' <0,v(0) = og.

As shown in figure 11, the mean volatility grows monotonically with time. The
deterministic result is dashed while the stochastic average solution is solid. Clearly, the
agreement is good.

4. Behavior of relative accuracy with decreasing tol, = tol;

Here we explore how the relative accuracy of solutions behaves with time and with changes
in the requested tolerance. We focus on the rate problem since it should be the most difficult
of the examples with two noises, two memory functions, two very different dynamical

14



J. Phys. A: Math. Theor. 41 (2008) 335005 J Wilkie and Y M Wong

-4 T T T T -1 T T T T

12 L L L L 11 L L L L
0 2 4 6 8 10 0 2 4 6 8 10

t t

(c)yvs. t (d) py vs. t
Figure 12. Base ten logarithm of relative accuracy versus time ¢ for three different tol,.

max

Table 2. Automatically generated s and n&4, for example 3.1.3, for different requested

tolerances.

Tolerance 1073 106 1077
& 3184 14250 66497
s 27.6460  56.5487  118.1239
g 3348 11403 50099
sax 402124 83.5664  176.5575

diffusion distances and four equations. We thus perform calculations for this model with
tol, = 1073, tol, = 10~% and tol, = 10~7. The grid parameters are shown in table 2.

The base ten logarithms of the relative accuracies are plotted in figure 12 for the four
different observables x, p,, y and p, in (a), (b), (c), (d) respectively. Results for tola = 107
are represented with solid lines, those with tola = 10~¢ with dashed, and those with
tola = 1077 used dotted lines. In all cases the relative accuracies are initially at or exceed
the requested tolerances, but as time increases an order of magnitude is generally lost. In
addition, where curves cross zero a spike in the error is observed due to loss of significant
figures with the decrease in magnitude of the solutions. This is a standard effect and away
from such zeros one sees a return to good accuracy. In all cases, excepting near zeros, an
accuracy representative of the requested tolerance is maintained.
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5. Discussion

We have shown that a general linearly scaling grid method for integrodifferential equations,
outlined in section 2, yields accurate solutions for a wide range of problems and memory
functions. We have also shown that the accuracy of the solutions increases in a predictable
way with a decrease in the user supplied tolerance fol,. Although the grid sizes employed
are sizable (e.g. typically a few thousand) the computational costs are quite reasonable. For
the simple damped harmonic oscillator, for example, about 3300 grid points are used and
thus about as many uncoupled equations must be solved, requiring about the same number of
operations per call to the Runge—Kutta derivative function [15]. By contrast, a quadratically
scaling method like [13] with the same number of grid points would require 10 operations
per call to the derivative function, and the equations are all coupled meaning that many more
such calls can be expected. It must also be emphasized that this is a fair comparison, since
both grids are equivalent as a consequence of their Fourier transform relationship as long as
AuAs = 2w/(2n# + 1). In other words, if good results are obtained with a given nd by
the quadratically scaling method, the accuracy will be precisely the same as that which could
be obtained with the same n2"¢ via the linearly scaling method [13]. Finally, in this linearly
scaling method all parameters are automatically generated, and so there are no difficult to
estimate auxiliary parameters such as appear in other methods [1, 5, 6, 13]. Thus, this linear
scaling method appears to be a significant improvement over existing techniques for obtaining
high-accuracy solutions of integrodifferential dynamical equations.
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